
* .rV

Wftr

I1 %Y 
fI

.. , ~ ~ n . . i ifslIM $eStffStlfrffflnffd ~

V17

. ~ ~ ~ ~ t 55miul-y45y5 z
5
~yW~f~~W d&St~

Reprduce Fro
Bes Aviabl Copy.:v~ 3 ach13



Best
Available.

Copy



i IIi d1'kS *iYc mm at di- of tb cjw t;

r 1 ýk *r "W Cht )"ema rtb

uw i;

Reproduced From
Best Available Copy



MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

MULTI.DIMENSIONAL SIGNAL-PROCESSING

RESEARCH PROGRAM

SEMIANNUAL TECHNICAL SUMMARY REPORT

TO THE
ROME AIR DEVELOPMENT CENTER

I OCI(DTiER 1980- )1 MArC-H 1983

9 191 ETIC
ECTE

"oi~ln. •coa:t itinn color ON 1 6 1981
platoe: All DTIC ropr'oduct-
iomi will bo iu bliack =
wldtoB

Apporwd (c puWb tekaw. dmtbutwoi unisnuitod.

LEXINGTON MASSACHUSETTS



ABSTRACT

This Semiannual Technical Summary covers the period I October 1980

through 31 March 1981. It describes the significant results of the Lin-

coln Laboratory Multi -Dimensional Signal-Processing Research Pro-

gram, sponsored by the Rome Air Development Center, in the areas of

image segmentation and classification, adaptive contrast enhancement,

and iterative implementations for multi-dimensional digital filters.
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MULTI-DIMENSIONAL SIGNAL-PROCESSING

RESEARCH PROGRAM

1. INTRODUCTION AND SUMMARY

The Lincoln Laboratory Multi-Dimensional Signal-Processlng Resea-ch

Program was initiated in FY 80 as a research effort directed toward the de-

velopment and understanding of the theory of digital processing of multi-

dimensional signals and its application to real-time image processing and

analysis. A specific long-range application is the automated processing of

aerial reconnaissance imagery. Current research projects which support this

long-range goal are image modellng for segmentation and classification, tech-

niques for adaptive contrast enhancement, iterative implementation of mnuiti-

dimensional digital filters, and mu)tiprocessor architectures for tiplementing

image processing algcrithms. Results in these research areas over the past

six months are described in this Semiannual Technical Summary.

-- In the area of image segmentation and classification, we have been devel-

oping a hierarchical segmentation scheme for processing images with several

region classes. This approach appears to offer improvements over a direct

multiclass segmentation. Examples are given in Sec. Z.

{.Adaptive contrast enhancement techniques have proved useful in several

areas. We have used adaptive contrast enhancement as a preprocessor for

image segmentation based on texture rather than gray level. We have also

applied these techniques to aerial images degraded by light cloud cover and

Iaze. The primary effects of this type of degradation are a reduction in con-
trant and an increase in the local average intensity of the image., In Sec. 3,

we show examples of the improvement which the adaptive contrast enhancement

techmiques afford on images suffering from this type of degradation.

In Secs. 4 and 5) we" discuss tw-, a.vects of the iterative implementation

of multi-dimensional digital filters. it,.is dirat concerns z-patial truncation

effects which occur during the iteration because the image frame buffer has a

finite storage capability. The errors caused by this truncation are closely -



related to the solution of a boundary value problem with boundary conditions

specified on the frame edges. These errors can be eliminated by including

the boundary conditions in the spatially truncated iteration,

Section 5 discusseS potential multiprocessor architectures, for realizing

multi-dimensional signal-processing operations such as those needed in the

iterative implementation. An underlying problem is the efficient partitioning

of multi-dimensioral signal-processing problems among the several proces-

sors in a multiprocessor architecture.

2. IMAGE SEGIMENTATION

In the previous Semiannual Technical Summary Report, we described a

segmentation procedure based on linear filtering methods to model texture in

local regions of an image and a Markov random field to model region transi-

tions within the image. We further showed application of this method to images

containing two region types. The segmentation algorithm described in Ref. I

is also applicable to cases where there are more than two types of regions in

the image, Thi conditions for the segmentation are as follows.

Assign a pixel with coordinates (n. m) to class i where i is the class for

which

EZin, m )

. . .1. Z - h Pr ilS, nil (t)

is minimum. In the above expression, E is the error in linear prediction of

a pixul fr-om a surrounding set of pixels, o is the variance of the prediction
error, and Pr (iI S j is the probability that the given pixel belongs to class i

given the classes of a surrounding set of pixels. (See Refs. I and 2 for more

details.) During the current reporting period, we have been applying the multi-

class form of the algorithm to aerial photographic data and experimenting v:tth

strategies for the segmentation of multiclass images. Our results indicate

that it is often better not to attempt to segment an image into a large number

of classes all at once. Instead. one can first segment the image into a few

categories and then perform additional segmentation within each category. We

4



refer to this approach as a layered segmentation strategy. Several examples

of using this layered approach are described in the following paragraphs.

In Ref. I we stated how an image which had been segmented into tree and

field regions could be further segmented into regions containing only large or

only small trees. Figure I compares results of this layered segmentation

approach to a nonlayered approach for this image. The image in Fig. I (left)

was first segmented into the broad categories of trees and fields. Within the

tree category we further segmented the image into large and small tree re-

gions; in the field category we segmented the image into two different field

types. The region boundaries arising from this layered approach are shown

in color. (Note that the small field in the lower left-hand corner has the same

texture as the field adjacent to it and thus is not recognized as a separate re-
gion by the segmentation algorithm.) Figure I (right) shows the results of

seg'menting the image into the four regions in a single step. The regions iden-

tified by the algorithm are coded in different colors. Figure I shows that the

layered segmentation strategy produced a more accurate result. Although both
approaches gave quite accurate estimates of the boundary between the two field

types and the boundary between the trees and field, the layered approach was

able to make more subtle distinctions between the small and large trees. Both

segmentation strategies had some problems near the boundaries of the image

due to the discontinuities arising there but the problems were more apparent

in the spot near the left edge of the image in Fig. t (right). The result3 of this

comparison are not really surprising since in a four-category segmentation

there is more room for error in the classification of the individual pixels than

in successive two-category segmentations. A few points in the small tree re-
gion classified as 'field" during the initial classification phase of the algorithm

can propagate their effects through the iteration employed in the algorithm and

lead to a final result that is incorrect. On the other hand. a layered approach
"may produce a large error in the initial categories that cannot be corrected at

successive levels of segmentation. Thus. one can expect that a layered ap-
proach will produce best results where there is clear separation between the

initial categories and subtle distinctions between the classes within those initial

categories.

3



Fig. I. Comparison of a layered segmentation (left) to a 4-class
segmentation (right) of a rural scene.
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Another approach to layered segmentation is to first segment the image

into regions representing various textures and a further category representing

constant tones (no texture). Within the nontextured regions we perform a seg-

mentation based on gray level. The results are then combined to produce the

final segmentation of the image. This technique is particularly useful for the

following reason. In segmenting an image for texture it is desirable to remove

large overall variations in tonality and render the inmage an overall middle

gray.1 'Z This eliminates artifacts in the segmentation due to variations in

illumination, shadows, and so forth. However, preprocessing in this manner

removes tonal features in nontextured regions that may be important for a

complete and meaningful segmentation of the image. A meaningful result can

be obtained by using a layered approach where a texture-oriented segmentation

of the preprocessed image is followed by a gray-tone segmentation of the un-

processed image.

Figure 2 illustrates this approach for a scene containing trees, water.

grass or fields, and a feature (apparently a road or bridge) passing over a

small stream. Figure Z (upper left) shows the original image and Fig. Z (upper

right) shows the preprocessed version. Note that iii the preprocessed image

the bright white area of the bridge has approximately the same tonal value as

the dark shadow under the bridge. Figure Z (lower left) shows the result of

segmeating the original image into regions with three tonal values (dark, shown

in red, middle grays, shown in green, and light. shown in blue). Figure Z

(lower right) shows the result of segmenting the preprocessed image into tex-

tures representing the trees (yellow). the grass and field areas (purple), and

the nontextured regions such as water, the bridge, and the shadows (light blue),

Figure 3 shows the original image with segmentation boundaries overlaid (be-

tween tree and field regions and between trees and water) in solid lines. In

additioii, the boundary obtained by overlaying the tonal separation of Fig. Z
(lower left) on the nont-xtured areas of Mig. Z (lower right) is shown ir gray.

This permits us to obtain a more accurate representation of the bridge segment.

As another example of this layered approach, consider the portion of the

scene shown in the white box in Fig. 4(a) and enlarged in Fig. 4(b). The en-

larged scene is 256 x 256 pixels in size and represents the full resolution of

7



Viq,. 2. Layered approach to segmenting a rural scene with textured
and nontextured areas. Original image (upper left), preprocessed
image (upper right), texture segmentation (lower left). and gray-
level segmentation (lower right).
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Fig. 3. Rural scene with boundaries
resulting from layered segmentation
superimposed.

SS
I I I I ,,

! F~ig. 4. Enlarged portion of a river scene used for layered segmentation

Sexperimient.
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the data. (The photograph from which the digital data were taken was scanned

at a resolution of 40 pim.) Figure 5 shows the original image and the result

aftex segmenting the image into textured regions (trees) and nontextured re-

"gions and applying three-level gray-tone segmentation within the nontextured

regions. Note that the dark shadows that the trees cast on the water are easily

separated from both the trees and the water using this procedure. The isola-

tion of shadowed areas may be important in deducing the height of objects in a

scene.

A final example of segmenting textured from nontextured regions is shown

in Fig. 6. The original scene of roadways connecting missile sites is shown in

the (a) part of the figure. The two-category segmented result is shown in tie

(b) portion. The segmentation of this scene is a difficult problem because the

roads tend to bleed into the surrounding terrain in many places and the pres-

ence of features on the roads (3uch as the objects in the coý-ner of the parking

lot) tend to produce something like a small textured area. Nevertheless, a

fairly good approximation to the roadways is obtained. Ideally we would wish

to follow this texture segmentation with a gray-level segmentation to highlight

features in the road. However, these features, because of their vize, have

tended to be confused with 'he texture and thus many do not appear in the re-

gion designated by the algorithm as roadways. This is a problem that requires

additional work. The features in the roadway can perhaps be detected by

scrutinizing the error residuals in the segmentation algorithms or possibly by

employing more texture classes.

Our current research is directed toward resolving some of the problems

described above and to developing a method for automatic selection of the train-

ing data (by the segmentation algorithm). The latter would allow the segmenta-

tion algorithm to function in a nonsupervised mode and eliminate the need for

human interaction to define sets of training data.

3. TECHNIQUES FOR REMOVING DEGRADATIONS CAUSED

BY LIGHT CLOUD COVER

In this section, we will discuss the use of homomorphic filtering to expose

objects beneath light cloud cover-. In particular, a deterministic model of

13



I Fig. 5. Segmentation of the river scene in Fig. 4(b).
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(b)

Fig. 6. Two-class segmentation of an aerial photograph of a missile site.
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imaging above cloud cover motivates an approach which utilizes an adaptive

homomorphic filter. This space-varying filter is parameterized by the local

mean level which reflects the degree of the local degradation.

The approach we take is distinctly different from other homomorphic filter-

ing procedures for image enhancement or restoration. It differs from the work

of Mitchell and Delp,3 which recovers images degraded by light cloud cover,

since their scheme relies on a stochastic image. It differs from the deter-

ministic approach of Oppenheim et al. and Gilkes 5 for image enhancement of

cloudless images, since again theirs are nonadaptive procedures. In essence,

it is closer to the adaptive approaches of Peli and Lima6 and Gilkes 5 where an

adaptive filter is parameterized by the local deterministic characteristics of

the data.

One long-space model of a cloudy image is described in Ref. 3. Specifi-

cally, this model of a cloudy image is stochastic and is a product of the cloud

transmission function and a function of the ideal image. Our cloudy image

model is deterministic and applies on a short-space basis. It assurmes that

the logarithm of the image can be divided into two approximately disjoint spec-

tral bands: the cloud spectrum occupying low frequencies and the image spec-

trum occupying high frequencies. Although the image contains some low-

frequency information, we shall assume it is not significant in exposing object

shapes under light cloud cover. In addition, we depart from a typical assump-

tion that the desired image itself can be modeled as the product of illumination,

a low-frequency component, and reflectivity, a high-frequency component.

Rather, we view the illumination component in the same way as we view the

reflectance component, i.e., as having an important high-frequency component

due to the interaction of light and ground objects. Furthermore, we assume

this high-frequency component is approximately disjoint from the cloud transfer

function which has a low-pass characteristic.

Before proceeding with the development of our new methods and compai-i-

sons, we review some important ideas and formulate a framework for our

investigations.

19



3.1 Modeling the Imaging Process

A number of approaches to modeling the imaging process have been pre-

sented in the literature. A more difficult problem is to model the imaging

process with light cloud cover. In this section, we first review one approach

to modeling undegraded images. Two different viewpoints are presented which

rely on an illumination-reflectivity model. We then enter a stochastic frame-

work in which a model of images degraded by light cloud cover will be dis-

cussed. Finally, we present our own deterministic interpretation of cloudy

images,

In the formation of images, the illumination and reflectivity are combined
by a multiplication law:4

I(n. m) = i(n, m) • r(n, m) (2)

where i(n, m) and r(n, m) are the illuminance and reflectance components, re-

spectively. One assumption is that the iliumination varies slowly (i.e., it con-

tains mainly low-frequency components) and the reflectance is sometimes dy-

namic and sometimes static and therefore may be regarded as containing mainly

high-frequency components. The logarithm operation separates the multiplica-

tive signal into two additive components:

log fI(n, m)] m log[i(n, m)] + log [r(nm)] . (3)

If a linear amplifier or attenuator with gain a follows the log, the image out-

put is given by

l'(nm) = (I(nm)a . (4)

When a < 1, we get a washed-out image and when a > 1, the image is sharpened

but might be saturated. If we want to reduce the dynamic range, which is con-

tributed mostly by the illumination, and increase the sharpness, which is con-

tributed mostly by the reflectance, we should choose a as a function of fre-

quency. i.e.. a < I for high frequencies as in Fig. 7. This is the essence of the

homomorphic filtering operation.

Since the illumination is not exclusively low frequency and the reflectance

consists of both high- and low-frequency components, the output of the homo-

morphic filtering operation has some artifacts. It seems that the degree to

20t
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Fig. 7. Variability of gain a
as a function of frequency.

which those artifacts are visible is strongly dependent on the way a changes

from a < I to a > I. As pointed out by Schreiber,7 homomorphic filtering

can be replaced by a linear filter followed by a power law for low-contrast
images. Schreiber hypothesizes that in natural scenes, the illumination func-

tion is av essential to perception as the reflectivity of the object. Both have
a broad spectrum, generally with more power at the low spatial frequencies,

The reflectance derives its low-frequency component from the presence of

large patches of relatively constant value. The illumination derives its high-
frequency component from interaction between the edges and surfaces of ob-

jects, which are at many different angles, and the incident light. Consequently,
any attempt to separate these components by homomorphic filtering will be

limited in its success. Instead, adaptive control of the low and high components

of the original signal is preferable for enhancement.

Now let us examine one model of images degraded by cloud cover.3 In this

model the ground reflection passes through the clouds. The energy collected

above the cloud consists of two components: ground information and scatter-

ing from the clouds. Figure 8 is a simplified model of the imaging process.
The energy recorded is given by:

s(n, m) = aLr(n,m) t(n, m) + L [i -t(n.m)1 (5)

where

L = sun illumination

a = attenuation of the illumination in a downward
direction (assumed constant)

21S S.



r(n, m) = reflectance of the ground

t(n, m) = transmittance of the cloud (upward),

O <t(n,m) < 1

In order to recover the desired reflectance information, it was assumed

that the transfer function of the cloud and the reflectance of the ground are

.M)

CLOUD Fig. 8. A simplified model

of imaging through clouds.

L

GROUND
r tn, m)

stochastic processes. It was also assumed that the transmittance of the

cloud has relatively more energy In low spatial frequencies. From Eq. (5).
we can obtain a multiplicative form of the "noise" and the "signal" given by:

L L- s(n, m) t(n, m) (L - aLr(n, m)] . (6)

Bly taking the log of Eq. (6), we obtain the sum

log[L - s(n.m)] = log(t(n.m)1 + log[L - aLr(n, m)J (7)

or

P(n, m) N(n. m) + Ml(n, m)

where

P(n, m) = log IL - s(n, m)) = "signal + noise"

N(n, m) = log[t(n, m)) = "noise"

M(n, m) = log[L - aLr(n ui)]= "signal"

i:: .22



3.2 Filtering Based on the Image Model 3

The recovery of the signal from Eq. (7) can be approached by the applica-

tion of Wiener filtering. If we assume that the signal and the noise are uncor-

related, we can reduce the noise by filtering the given degraded image with

the following optimal filter

SNN(gi,2) + MM N M2 S (•Olj W ) + M. MN"6(w,•2
H(i'2)=S Zt•) + SNN(wl' •2) +2ML N

Sp(wtw 2 ) (8)

where

M is the mean value of the given signal M

MN is the mean value of the given noise N.

In order to estimate Spp, the power spectrum of the signal plus noise and

SNN the power spectrum of the noise, the values L and t(n, m) need to be

calculated. L was estimated as the highest value in the image and t(n, m) was

estimated by the following:

A~~ L-S(n, m)(9
t(n.m) = (9)

where G is a constant which approximates the typical ground reflection

[i.e., the average of aLr(n, m)].

The power spectrum of the noise was estimated roughly by the magnitude

squared of the Fourier transform of t(n. ni). Since the transfer function of the

cloud was considered to possess only low frequencies, the estimate of this

power spectrum was low-pass filtered. The cross section of the resulting

filter is given in Fig. 9.

The filter has a boost at (wi, Wot) (0, 0) as a result of assuming a non-

zero mean process and an attenuation at the low frequencies. Except for the

value at (0, 0), the filter has basically the same functional form as the gain in

the homomorphic filtering approach. It should be noticed that in homomorphic

23
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IM/" MNI - Fig. 9. Cross section of the Z-D

Wiener filter.

Lv

filtering, it is possible to sharpen the edges while in the Wiener filter approach.

it is not since I H(w)I I i for all w • 0.

In general, the noise spectrum density SNN(W10i I ) is not known accurately

and consequently, the Wiener filter used to process the noisy image may befi suboptimal. An alternative approach involves iteratively updating the esti-

mate of the spectral density of the noise. Since an estimate of the reflectance

function aLr(n, rn) is used in determining G in Eq. (9), the improved estimate

of aLr(n, m) obtained from the Wiener filter output can be used to update the

estimate of the noise spectral density, The Wiener filter In Eq. (8) is then re-

computed and the original cloudy image is again filtered. If we do this re-

peatedly, the resulting iterative process should converge to a better estimate

than generated by the one-step Process. In the space domain, the iterative

cloud estimate is given by
".~ L (n, m)

ti(n1 M) 0 r -•-- (tOa)

where is a constant. From 'tt(n, mi), we get a better estimate of aLr(n, m)

denoted by G (n, m), and the iteration is continued as

" f L - S(n, ,rtbtk (n, ni) : - k(10b)

where Gk is the ktL estimate of the function aLr(n, m).

Z4



We can introduce a modification of this iteration where, rather than filter-

ing the original cloudy image on each iteration, we filter the updated signal

estimate [i.e., filter G k+(n, m) by using Gk(nh m) to create the new signal esti-

mate Gk+z (n, m) 1. In the space domain, the iterative cloud estimate is given by

A L -Gk+1
t (n. m) = k-Gk-I,... . (11a)k+Z L-Gk

The initial conditions G and G are estimates as follows:

(n.M) = L n) (iib)

1 ~n,- L-G 0

where G is a constant and
A L - s(n, m)
t z(n, m) = L G( - (iic)

( This procedure appears to generate a better restoration.

3.3 Homomorphic Filtering

The assumption that images and clouds are stochastic processes is very

artificial. A more appropriate approach invokes the assumption that the two
7are deterministic processes. In fact, we adopt Schreiber's approach which

assumes that both illumination and reflectance contain low and high components

and that the high frequencies are more important for perception. At the same

time, we assume that Lhe transfer function of the cloud contains only low

spatial frequencies. We now interpret Eq. (6) so that t(n, n') is determin-

istic and contains mainly low frequencies and L - aLr(n, m) is also determin-

istic and contains perceptually important high-frequency information. By

using these assumptions, the image aLr(n. in) can be restored by homomorphic

filtering.

As discussed in Sec. 3.2. both the image illumination and reflectance con-

tain low- and high-frequency components. In our application, however, the

perceptually impywrtant high-frequency component of illumination is actually a

blessing. That is. since light cloud cover is primarily low pass. it can be

25



homomorphically filtered without significantly disturbing the high-frequency

component of the desired image's illumination and reflectance. Of course, the

desired low-frequency components will be altered. Nevertheless, these changes

should reflect themselves simply as illumination changes over large constant re-

gions, thus not disturbing any significant information under the light cloud cover.

An implied assumption here is that the, cloud spectrum contains predomi-

nantly low-frequency components, which motivates the long-space homomor-

phic filtering solution. In fact, this is similar to the assumptions made by

Mitchell et al.3 in a stochastic framework. However, the thickness of cloud

cover can change over the extent of an image. Consequently, an adaptive

approach should be better suited to restoring the desired image. i.e., an ap-

proach where the homomorphic filter changes with local cloud characteristics.
6 8

In earlier work, ' we developed a locally adaptive contrast enhancement

technique based on high-pass filtering. The local mean of the cloudy image

was used to determine how much gain was applied to the high-frequency-com-

ponents of the image in a particular" alea. In this way the amount of contrast

increase was adaptively adjusted across the entire image. The adaptive homo-

morphic filtering approach described here is similar in that measurements

made on local image characteristics are used ta detarwnne the homomorphic

filter characteristics.

The adaptive technique can be formulated as follows. Consider applying

a short-space window to the noisy signal P(n. mn) in 0q. (1):

, 111~) W,(n. im) , P(n. m) IW(n - n p/2, m - kM/Z)

P(nni) . (m2)

Let us assume the window takes on a pyramidal shape and is shifted over the

data at intervals of half its length (i.e., M/2 where Al x M is the extent of the

window). Consequently, the window has the followlng desirable property:

W~n - I M/Z. ni - klIh/Z) = I13

I k

Applying an adaptive filter which operates on each segment P1 . k(n. mn), we

obtain:

26



A
P1, k(n, m) = P, k(n,mt n * h,0 k(n, m, O)

'= [W(n ... IM/2, m -kM/2) P(n, m)] h* h, k(n, m,O0) (14)

where the parameterized fl"(-r impulse response h , k(n, m, 0) is a function of

the vector e, which is a set of parameters dependent on the local cloud char-

acteristics. (The double asterisk denotes 2-D spatial convolution.) In partic-

ular, 0 is a function of the DC level of the windowed signal which reflects the

cloud density under the window. Further, the filter is a high pass where the

shape and amplitude depend on 0. Later we will elaborate on this design.

For Eq. (7), the filtering process is then given by
AI

P1, k(n, m) = (W(n - IM/2, m - kM/2) {log(t(n, m)]

+ log[L - aLr(n, m)]}) **h,k(nm.O) (15)

I We assume that the window is "sufficiently smooth" so that the low-pass

nature of the noite term log it(n, m)I and the high-pass nature of the s&gný.1

component It- [L - aLr(n, ai)J are preserved after windowing. Consider the

case whý re the noise and the signal are disjoint in frequency, and the filter

h (n, !n, 0) is an ideal high-pass filter whose nonzero energy band matches

that of the signal, then we can write

P. (n, m) - W(n - I M/Z. m - kM/Z) logIL - aLr(n,m)] . (16)

In practice, however, these assumptions do not hold exactly. Since the noise

and signsl are only approximately disjoint, the noise term will not be entirely

removed, and since the filter is not an ideal high pass. the signal will not re-

main intact. Alternatively, whe, ' 1k (n. m, 0) adaptively amplifies the high

£frtquencies and attenuates the lows, the cloud will be only partially suppressed

(while somewhat disturbing the low-frequency component of log 11-- aLr(n, mn])

and the high-frequency detail of the desired signal will be enhanced (while

boosting any cloud energy in this region). The relation in Eq, -16, represents

an approximation of the desired windowed signal along with the effects of any

residual cloud noise. The parameters 0, in h1 , k(n. eO0), which rely on the

2?
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local cloud denvity should be chosen so that the noise is suppressed as much

as possible without altering the desired signal.

With these approximations in mind, our reconstruction procedure (which

we refer to as ovcrlap-add) can then, with the use of Eq. (13), be written as

P(n, m) = .' Y W(n - lk/2, m - lk/2) log [L - aLr(n, m)]

Sk

= log[L - aLr(nnm)] • ZW(n - 1VU /Z, m- Mk/Z)

Sk

= log [L - aLr(n, m)] . (17)

This procedure is illustrated in Fig. 10. Finally, to obtain an estimate of the

signal, we exponentiate P(n, m) to recover aLr(n, m).

P (n. m)

.. t n M) mi. 2.Mk

POO P1,

IGHIGH
PA S~J1 PASS

Fig. 10. Overlap-add technique for adaptive image filtering.
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From the simple model of imaging above clouds, we have concluded that

it is desirable to adaptively attenuate the low frequencies and to amplify the

high frequencies of an image. A filter which has the desirable shape and is

computationally efficient is a circularly symmetric Gaussian which is shifted

to w = ir. A cross section of this filter is given in Fig. 11 where I H(O) I < 1,

S(18)

The filter size was chosen to be fixed at 16 X 16. The filter parameters A, B,
and C are functions of the value of the Fourier transform of the windowed data

at (wIW 2 ) = (0, 0) (i.e., the DC value of the pyramid-shaped window). The

filter parameters are given for two extreme DC values: (Ai, Bi, C1) for a

DC level of zero and (AZ, B2, CZ) for a DC level of 225. For a DC value that

lies between these two extremes, the parameters are computed by a quadratic

equation
(Yz - Y)' D2

Y= - 1 + Y for Y=A, B, C (19)
255

where D denotes the OC level and where Y and Y 2 represent the two extreme

values of each parameter.

It is desirable that for a low value of the DC level (i.e., little or no cloud

cover), very little attenuation and amplification should be used and, further,

the amplification should be applied to only the very high frequencies (i.e., B,

the standard deviation of the Gaussian shape in Fig. Ii, should be small). For

a high DC level (i.e., thick clouds), the attenuation and amplification should

be applied to a wider range of high frequencies (i.e., B should be larger). A

quadratic interpolation for computing A, B. and C was used rather than a

linear interpolation because a larger range of low level of luminance needs

almost no processing.
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A+C

2Y

Fig. 11. Cross section of a Gaussian
high-pass filter.

3.4 Experimental Results

An experiment was performed in order to compare the Wiener filtering

approach to the homomorphic filtering approach for removing degradations

caused by light cloud cover. An aerial reconnaissance image partially de-

graded by light cloud cover is shown in Fig. 12. Figure 13 is the result of the

Mitchell and Delp algorithm when the estimate of the typical ground reflection

G was chosen to be a constant equal to 140. The processed image seems to

contain only the high frequencies of the unprocessed image.

By using the iterative approach described by Eqs. (10a) and (10b) one can

improve the estimate of the noise spectrum. Figure 14 contains the result
after three iterations.

Figure 15 is the result after three iterations of improving the estimate

of the noise and also reprocessing the processed image as in Eq. (Ita). One
can see that the second form of iteration is more desirable.

Long-space homomorphic filtering was examined with two different filters.

Each has a Gaussian shape as described in Sec. 3.3 and a length of 256 x 256

(i.e., the length of the unprocessed image). The parameters of the first filter

are A = 3.65, B = 320, and C = -2.15. The processed image is shown in
Fig. 16. The second filter which sharpens and attenuates more than the first

has the parameters A = 6.21, B = 320, and C -4.21. The processed image

is illustrated in Fig. 17. From these results, we can see that there is sorne
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Fig. iZ. Aerial photograph with some light cloud cover*
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p

Fig. 13. Image processed by application of a global Wiener filter
applied to log(L - s(n.m)]. (See Ref. t.)
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Fig. t4. Image processed with a global Wiener filter iterated
three times to obtain improved estimate of noise power
spectrum.
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Fig. 15. Image processed according to Eq. (t1) with three iterations.
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Ii

Fig. 16. Image processed with a long-space homomorphic high-pass filter

with parameters A 3.65, B1 32O, and C -ZA5.
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Fig. 17. Image processed with a long-space homomorphic high-pass filter

with parameters A = 6,Zt, B1 320, and C = -4.2t.
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sharpening but most of the cloud was not removed and, therefore, some ob-

jects were not exposed.

In the adaptive homomorphic filtering approach, a pyramidal window of

size 16 x 16 was chosen and the parameters ranges are given in Table I. The

filter shapes are shown in Fig. 18, and the processed image is illustrated in

Fig. 19.

TABLE I

RANGE OF PARAMETERS FOR THE ADAPTIVE
HOMOMORPHIC FILTERING

DC 0 255

A 0.2 1.82

B 5.0 20.0

C 0.9 -0.32

H (w) I

~D ,S••/C25521

0.5

V

Fig. 18. Range of filter shapes for adaptive homomorphic system.
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Eig. 19. im~age processed with adaptive Ilorollr ic filter.
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We see from our results that the most desirable restoration, i.e., maxi-

mum suppression of the cloud and enhancement of the objects, was achieved

by adaptive homomorphic filtering. We are beginning to explore implementa-

tion strategies for this algorithm to improve its computational efficiency.

4. ERRORS CAUSED BY TRUNCATION EFFECTS
IN THE ITERATIVE IMPLEMENTATION OF
MULTI-DIMENSIONAL DIGITAL FILTERS

When an iteration is used to compute successively better approximations

to the output of a digital filter, the effective impulse response grows in extent

at each iteration. For the case where the frame storage buffer has a fixed

size, the extent of the successive output estimates is limited by the buffer size,

resulting in spatial truncation errors which affect successive approximations

to the desired output signal. In this section, we shall discuss our preliminary

findings on truncation errors and their relation to b'undary conditions. We

begin by giving a brief review of the iterative implementation.

4.1 Brief Review of the Iterative Implementation

The iterative filter possesses an interesting structure to implement, since

it involves FIR (finite-extent impulse response) filtering operations as well as

the feedback of buffered output image frames. Because of this frame feedback,

the iterative filter can be used to approximate the output of a Z-0 symmetric

rational transfer function. Consider the filter frequency response of the form

I.(wt, W2 )
.•: I~ oi.w2 fi B(W i, W Z) (Z 0)

where A(w 1,,W) and P(wt' . 2 ) are 2-D trigonometric polynomials with coeffi-

cients a(n1 t 11 and b(n, n Z), respectively. With appropriate normalization.

we can write

B(WCw) =i -WC (wifw) fWi)

where C(wi"w 1 2 ) is another trigonometric polynornial with coefficients c(n 1 . n,).

Let us filter an input image x(n1, n 2 ) to obtain an output image yini, nZ). Then

x(n4, n2 ) and y(n1, n2) satisly the implicit relation
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y(nj,n 2 ) = a(ni, nZ) * * x(n.l nl) + c(nl, n2 ) * * y(niin) (Zn)

where the double asterisk denotes 2-D convolution. We can use this relation

iteratively to generate successively better approximations to y(ni, n.). Letting

i denote the iteration number, we can write

y Y(ni, n,) = a(n,,n,) ** xilnt, nz) + c(n,.n.) ** yi_1 (n,, n.) (23a)

or in the frequency domain

Y i , (WIP2) = A(wico2 ) Xi(Wt W2) + C(1IcWWZ) Yi.1(WItW2) . (23b)

The subscript i on the input image xi(n,. n2 ) is included to indicate that the

iterative implementation may be generalized to accept sequences of image

frames as its input. Similarly, the image sequence yipnj, n 2 ) may be regarded

as a succession of image frames. At this point, it is natural to consider the

iteration index i as a time variable.

Figure Z0 shows a simple block diagram for the iterative implementation

which highlights the basic operations. There are two FIR filtering operations.

denoted by the boxes labeled A(w•V.W 2 ) and C(I w a). a sumrning node. and a

frame storage buffer.

A (w.. ý
(W. ,,.., L. W:I H I

Fig. 20. Block diagram of the Z-D iterative filter implementation.
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4.2 Characterization of the Truncation Error

The operation of truncation is particularly important since we cannot deal

in practice with infinitely long sequences. Because the output of a rational

"filter has infinite extent in general, errors will be introduced by repeated

truncation and may become intolerably large over the limited domain of the

output signal. The error over this limited region can be viewed as the solu-

tion to a homogeneous partial difference equation with specified boundary con-

ditions. In particular, the error is linearly dependent on values of the ideal

solution along the boundary of the region remaining after truncation.

The iteration (23a) c-n be written in operator notation as

yi(nj, n?) = Fyi_1 (nj, n2 ) (Z4)

where F is an operator of the form

Fy(n, n) = a(n,n 2 ) ** x(n, n ) + c(nin 2 ) **y(n1 , n2 ) (25)

Under the appropriate assumptions, there exists a unique solution y(n1 , ne) =

Fy(n1 , n2 ). When the size of the frame buffer is exceeded, the 2-D signal

Yi(ni, nz) must be truncated in extent. This introduces a truncation operator

T into the iteration, giving Eq. (Z4) the form

Yi(ni 5 n) = TFYi-1 (ni5 n2 ) (Z6)

where

y(nl, n,) for (n1jn 2 ) El
- .•Ty(n, n.) = 1, 0 for (n1 1 n2 ) n I 2(2)

(The region I can ba thought of as representing the extent of the frame buffer.)

The iteration (R6) also can be shown to have a unique solution 9A(ni. n2 )A

TFy(ni, n.). In general, the solution to Eq. (24), y(n1, n.), will not be equal

to y(ni, n ). The difference batween these two signals is attributable to the

truncation effects. Let us define the truncation error as
A

e(nV n) = V n.~n) - y(n 1.nZ) (28)
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It can be shown that the error signal e(ni, n2) satisfies an iteration which

corresponds to driving Eq. (23a) with no input [xi(ni, n2 ) 0] but imposing

boundary conditions around the edges of the region I. Let us consider a re-

gion Ib which surrounds the region I. The extent of Ib depends on the extent

of impulse response c(ni, n2 ) in Eq. (23a). We can now define the boundary

conditions bnd(ni, n2 ) to be

y(ni n2 ) for (ni, n2 ) E Ib

bnd(nin2) =

0 elsewhere . (29)

Then the error signal e(nij n2 ) satisfies the iteration

ei (ni,n 2 ) : T[c(nln 2 ) ** ei_ (n±, n ) + bnd(nl,n 2 )

for(nin2) E I +Ib • (30)

The energy in the error signal can be shown to be proportional to the energy

in the boundary condition signal bnd(ni, n2 ). Thus, if the size of the frame
buffer (and hence the extent of the region I) is large enough, one would expect

that the correct solution y(ni, n2 ) (and hence the boundary condition signal

bnd(nV, n2)0 would be small in the region Ib# In this case, the error signal

e(nt, n2 ) also will be small, and y(ni, n2 ) will be a good approximation to the

desired output signal y(ni, n2 ). Furthermore, the error can be eliminated by

including the boundary condition information bnd(ni. n2) in the spatially trun-

cated iteration, giving it the form

Yi(n1 in) TFy (11(ni, .r) + bnd(n1 . n.)

for(nn 2)Ef+Ib . (31)

5. POTENTIAL ARCHITECTURES FOR THE ITERATIVE
IMPLEMENTATION OF MULTI -DIMENSIONAL DIGITAL
FILTER•S

In this section, we shall examine some architectures which support the

iterative implementation of multi-dimensional digital filters. We begin by
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discussing possible data-handling approaches and their implications with re-

spect to architectures. Later, we shall take a "software" point of view and

discuss the problem of partitioning signal-processing operations among several

processors in a multiprocessor architecture.

Referring back to Fig. 20, we see that the iterative implementation con-

sists of two FIR filtering operations, denoted by the boxes labeled A(WV, W 2)

and C(w V0 w2 ), a summing node, and a frame storage buffer. Consequently,

much of the discussion of processing architectures will be directed toward

the efficient implementation of multi-dimensional FIR filters.

5.i Image Flow Options

There are three popular methods for describing how a sequence of images,

each composed of many picture elements (pixels), may flow through a signal-

processing architecture. The iterative implementation as diagrammed in

Fig. 20 sugge.sts a "frame-by-frame" image flow which might result naturally

from a lens imaging system; all the image pixels from a given frame are

available simultaneously. One of the major problems with this image flow is

providing the large number of parallel data paths necessary to shuttle entire

images around the processing structure. Conversely, one advantage is the

relatively long available data transfer time, typically 1/30 a. Consequently,

there .s flexibility in trading data transfer time for the number of data paths

using multiplexors and demultiplexors.

At the other extreme of the image-data-flow spectrum we have the "se-

quential pixel" flow. All the pixels in an image are transferred one after

another (multiplexed), followed by the pixels of the next image frame, and so

on. The processing structure sees a continuing stream of pixel values. This

se.rial flow of image data can result from sensors such as the flying spot

scanner, where a single detector is swept across an image in a raster scan.

With the sequential pixel flow, only one data path is needed since all the pixels

are multiplexed into a single stream. However, the data transfer rates can

become quite large, For a high resolution t024 X 1024 image, the data trans-

fer rate is approximately 30M pixels/second.
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The "parallel row" image flow offers a compromise between the frame-

by-frame and the sequential pixel image flows. The parallel row image flow,

as the name implies, transfers rows of image data in parallel, but the pixels

within each row are transferred serially. This serves to reduce the number

of parallel data paths compared to the frame-by-frame method, and yet it does

not require the high transfer rates of the sequential pixel method. Unfortu-

nately, the number of parallel data paths required may still be large for typica

image data. The parallel row image flow seems potentially well suited to

sensor systems consisting of a linear array of detectors; each row of the

image corresponds to data from one of the detectors.

5.2 An Architecture for Iterative Filters Using Sequential
Pixel Image Flow

As we saw in Fig. 20, the iterative filter contains two 2-D FIR convolu-

tions, so let us begin by examining the structure for convolution with a sequen.
tial pixel image flow. The approach is straightforward; basically, it consists

of a pixel buffer which allows simultaneous access to all the input pixels neede

to compute a particular output pixel. Figure ZI shows the implementation of

a 3 X 3 FIR filter on a sequential pixel stream. The unit delays in conjunction

with the shift register delays form the necessary pixel buffer. The length of

the shift register is two less than the length of an image row, so that a shift

register delay plus two unit delays will buffer an entire row of pixels. The

appropriate nine pixels are multiplied by the FIR filter coefficients and then

summed to form a single output pixel. The gating logic shown in Fig. 21 allowi

one or more of the product terms to be zeroed out; this is necessary to handle

edge pixels in the images and the boundary between images.

The convolution operation shown in Fig. 21 may now be used in the imple-

"mentation of the iterative filter. In effect, Fig. 21 is inserted into the boxes

labeled A(w .W,) and C(w1 , w•) in Fig. 20. The frame storage buffer in Fig. Z2

can be implemented with a shift register whose length is equal to the number

of pixels in an image. It may even be possible to combine the two filter output

accumulators with the summing node in Fig. 20 for more efficient operation.
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Ii 0"10-1l

ROW

UNIT UNIT ROW

DELAY DELAY n

ROW ROW

nUNIT UNIT
0-_ DELAY DELAY

_____________ROW

ROW n_ R
n+.1

UNIT UNIT
DELAY DELAY

Fig. ZZ. Structure for a row-parallel convolution. (Braces represent
coefficient multiplication, accumulation, and gating.)

54



There are some flexibility problems with this approach. The size of the

pixel buffer in Fig. 21 depends on the size of the FIR filter being implemented,

as does the number of coefficient multipliers, control gates, and accumulator

inputs. A structure designed to implement convolutions of a fixed size, say

3 x 3, would not be able to implement larger-size convolutions. On the other

hand, a processor designed to support an i1 X It convolution would not be

making full use of its computational potential when implementing any smaller-

size convolutions. Furthermore, the sizes of tne frame storage buffer in

Fig. 20 and the gating logic signals in Fig. 21 depend on the number of pixels

per image.

The exact length of the frame storage huffer a::so depends on the assumed

regions of support for the impulse responses a(n1 , n2 ) and c(ni, n2 ). If a(n1, n2 )

and c(n 1 , n 2 ) are 3 X 3 with first quadrant -.upport, then the length of the frame

buffer is equal to the number of pixels irn an image. However, if a(nt, n2 ) and

c(ni, n 2 ) are 3 X 3 but centered on the ortgin, the frame buffer length must be

shortened by one row plus one pixel to ensure that the forward pixel stream

and the feedback pixel stream are pi operly synchronized. This detail further

reduces the flexibility of this structure for implementing a variety of iterative

filters on a variety of image sizes.

5.3 Row Parallel Architectures

The structure for implementing an iterative filter with a row parallel

image flow is quite simila. in style tc the sequential pixel structure discussed

above. However, there ure some differences in implementation. For example,

there is no longer a need for the shift register delays in Fig. 21 since input

pixels are available in parallel. Also, the generation of the output pixels in

parallel requires th3a -eplication of the coefficient multipliers and the accumu-

lator in Fig. 21. Thus, the cý.rrsponding structure for the implementation of

an FIR filter with rmv • parallel image flow takes the form shown in Fig. Z2.

The brackets represent the mvltiplikation by filter coefficients, gating, and

accumulation functionti shown explicitly in Fig. 2t. The brackets also serve

to indicate the inter-iow communication which is necessary to implement a

finite-t itent convolution.
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The structure of Fig. 22 may be substituted for the boxes labeled A(w, iw)
and C(wi, W•) in Fig. 20 to implement an iterative filter. Because of the row

parallel image flow, the number of data paths in the iterative filter is equal to
the number of rows. This number may be prohibitively large for many applica-

tions; pixels may have to be multiplexed to share a smaller number of data

paths. This, of course, leads us back in the direction of the sequential pixel

image flow.

The row parallel structure also suffers from the inflexibilities described

in Sec. 5.2. The number of unit delays, the amount of inter-row communica-
tions, and the number of coefficient multipliers depend on the size of the con-

volutions being implemented. The size of the frame buffer in Fig. 20 depends

on the image size as before.
We shall just mention the frame-by-frame image flow in passing, since

the number of parallel data paths required, equal to the number of pixels in

an image, is impossibly large for current technology. Each output pixel in a

given frame is computed in parallel with all the others. For each convolution,
this requires a set of coefficient multipliers and accumulators for each pixel.

Reducing the number of multipliers and accumulators by multiplexing essen-

tially leads us back toward the row parallel and sequential pixel image flows.

5.4 Multiprocessor Architectures and Algorithm Partitioning

The architectures discussed in Sec. 5.2 and 5.3 were derived from the
block diagram of Fig. 20. They seem to possess a certain inflexibility, or
hardwired characteristic, that potentially limits their usefulness, although a

clever designer may be able to introduce more flexibility into the structure by
using random access buffers and microprocessor-controlled multiplexing of

the multiplication and accumulation hardware.

Alternatively, we can try a software-oriented approach to the problem of

implementing an iterative filter. A single processor with an appropriate

amount of random access memory can be straightforwardly programmed to

cycle through the necessary computations to produce the output image frames
one pixel at a time. Now suppose we have a number of processors at our dis-

posal. The problem becomes one of partitioning the image processing
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algorithm, in this case the implementation of an iterative filter, so that each

processor is kept busy and is working as independently as possible.

Realistically, the number of processors will be relatively small, say 8.

We can partition the image into strips or blocks and assign to each processor

the responsibility for computing the output pixels in a particular block. If the

size of the block is large compared to the extent of the FIR impulse responses

used in the iterative filter, each processor can run independently, as if it were

a single processor working on a smaller image, to compute the necessary

convolutions on each iteration. Care must be taken where the blocks abut;

some inter-processor communication is necessary, either to transfer partially

computed output pixels or extra input pixels to neighboring processors.

If one of the processors breaks down, then one block in each output image

frame will be garbled or missing. (This block could be moved around from one

frame to the next by reassigning processors.) Consequently, this partitioning of

the problem does not lead to a very robust implementation. As an alternative,

we could subsample the input image frame to obtain several smaller, lower-

resolution subimages. A processor could be assigned to process each sub-
image, and the full output image could be constructed by appropriately inter-

lacing the processed subimages. For example, Fig. 23 shows how an 8X8 image

may be partitioned among p = 8 processors. Now each processor has only one-

eighth of the input pixels to handle but, for a finite-extent convolution, it must

generate a term to contribute to each output pixel in the full image. Each term

is roughly one-eighth as complicated as the full sum of products needed to com-

pute a single output pixel, so the amount of computation performed by each

041504 41 6

6 2736273

Fig. 23. Partitioning the pixels 1 5 0 4 1 5 0 4
in an image among 8 processors.
The numbers indicate the pro- ? 3 6 2 ? 3 6 2
cessor (p$ to p7) to which each
pixel is assigned. 0 4 1 5 0 4 1

• 6 2 7 3 6 2 ? 3

1 504 1504

37 362 7? 362
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processor is essentially the same as if it were computing an output subimage

independently of the other processors.

This notion can be made a little more concrete with the example of a

3 x 3 convolution. The output pixel at (nj0 n.) is given by

w(n±,n2 ) = a(-I,-i) x(nI + i,n 2 + 2) + a(-1,O) x(n 1 + 1, nz)

+ a(-I, i) x(ni + 1,n. - i) + a(O,-I) x(n11 n. + i)

+ a(O, O) x(niP nz) + a(O, i) x(n An. - I)

+ a(i,-1) x(n1 - 1,n2 + i) + a(l, 0) x(n1 - in 2)

+ a(, i) x(n - in2 -i) . (3Z)

If the input image is partitioned as in Fig. 23, then processor po must

compute the following terms and send them to the other processors:

Source Destination
Processor Processor Term For Output Pixel

po po a(O O) x(nie n ) w(n 1 , n2 )

p1 --

pZ a(i,-1) x(n 1 - Z,n. + 2) w(n, - 1,n 2 + 1)

+ a(-I, 1) x(nI, n.)

p3 a(Ilb) x(n1 , nZ) w(n, + i,nZ + 1)

+ a(-i,-1) x(ni + 25 n2 + 2)

p4 a(i. 0) x(ni. n2) w(n, + 1, n2 )

p5 a(-I, 0) x(n1, n2 ) w(na - 1. n.)

p6 a(O,-1) x(ni, n2 ) w(n 1 'n2 - 1)

p7 a(O, 1) x(ni, n2 ) w(n, &n2 + 1)
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Similarly, processors pl to p7 must deliver partial results to all 8 proces-

sors. Then the partial results can be accumulated to generate the output pixels

assigned to each processor.

Let us look briefly at the amount of memory required. We shall assume
that image frames consist of N2 pixels and there are P processors. Each

processor needs an N /P-pixel input buffer and an N /P-pixel output buffer.

In addition, each processor must have N (P - 1)/P storage locations for saving

the partial results which will be sent to the other (P - 1) processors. Conse-

quently, the total amount of storage required for all processors is N (P + 1)

pixels.

When the processors are done computing the partial outputs, they need to

send and receive data to allow them to finish computing the output pixels. We

need to postulate an interprocessor switch to accomplish this communication.

The po output is coupled to the pl input while the pl output is coupled to the
pZ input, and so on. Then pol communicates with p2, pt with p3, and so on.

After P - I settings of the switch, the final output pixels can be computed. The
total number of pixels transmitted over the interprocessor switch is N (P - 1),

but because of the parallelism only N (P - 1)/P transfer cycles are used.

The amount of memory used by each processor to buffer the intermediate

results can be reduced if the intermediate results can be transmitted shortly

after they have been computed. Obviously, the number of pixels transferred

and the number of transfer cycles needed do not change; more frequent trans-

fers of shorter data blocks occur.

5.5 Conclusions

The ideas outlined herein should be regarded as preliminary. Neverthe-

less, some conclusions can be drawn. First, the development of a structure

for implementing iterative filters based on the block diagram in Fig. 20 seems

to lead to rather inflexible architectures. Second, for particular applications,

the type of image flow may depend on the type of sensor (flying spot vs linear

array vs lens). Multiplexors and demultiplexors may be used to translate

from one image flow to another, of course, but processing architectures may

have to be sensitive to the differences in image flows in a real-time application.
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At the moment, there seem to be two interesting methods for partitioning

the filtering operation which deserve closer scrutiny. The first involves

assigning each processor to compute the output pixels in a particular block of

the output image frame; the second assigns a subsampled image to each pro-

cessor so that the effects of a malfunctioning processor will be more diffuse

and perhaps less deleterious.
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